资源类型

期刊论文 139

年份

2023 12

2022 11

2021 11

2020 13

2019 11

2018 15

2017 11

2016 4

2015 7

2014 4

2013 3

2012 6

2011 3

2010 6

2009 6

2008 4

2007 3

2006 1

2005 1

2003 1

展开 ︾

关键词

无氢渗碳 2

MOF基催化剂 1

PET酶 1

PET降解 1

SWAT模型 1

Si/Al 比值 1

X射线自由电子激光 1

“彩虹”捕获 1

三维含孔洞结构 1

不良妊娠结局 1

中微子 1

亲钠性铋基材料 1

催化还原 1

光镊;真空光阱;激光冷却 1

共聚反应 1

切割效率 1

初始干密度 1

单质炸药 1

危险因素 1

展开 ︾

检索范围:

排序: 展示方式:

One-pot hydrothermal fabrication of BiVO/FeO/rGO composite photocatalyst for the simulated solar light-driven degradation of Rhodamine B

《环境科学与工程前沿(英文)》 2022年 第16卷 第3期 doi: 10.1007/s11783-021-1470-y

摘要:

• BiVO4/Fe3O4/rGO has excellent photocatalytic activity under solar light radiation.

关键词: Photocatalysis     Ternary magnetic photocatalyst     Visible-light-driven     Free radicals trapping     Reusability     Recycling    

Decontamination of Cr(VI) facilitated formation of persistent free radicals on rice husk derived biochar

Kaikai Zhang, Peng Sun, Yanrong Zhang

《环境科学与工程前沿(英文)》 2019年 第13卷 第2期 doi: 10.1007/s11783-019-1106-7

摘要:

PFRs were produced on biochar during Cr(VI) decontamination.

PFRs formation on biochar was owing to the oxidization of phenolic-OH by Cr(VI).

Appearance of excessive oxidant led to the consumption of PFRs on biochar.

Biochar charred at high temperature possessed great performance to Cr(VI) removal.

关键词: Biochar     Persistent free radicals     Phenolic hydroxyl groups     Cr(VI) reduction    

Light-induced variation in environmentally persistent free radicals and the generation of reactive radical

Yafang Shi, Yunchao Dai, Ziwen Liu, Xiaofeng Nie, Song Zhao, Chi Zhang, Hanzhong Jia

《环境科学与工程前沿(英文)》 2020年 第14卷 第6期 doi: 10.1007/s11783-020-1285-2

摘要: Abstract • Light irradiation increased the concentration of free radicals on HS. • The increased spin densities on HS readily returned back to the original value. • The “unstable” free radicals induced the formation of reactive radical species. • Reactive radicals’ concentration correlated strongly with EPFRs’ concentration. Environmentally persistent free radicals (EPFRs) in humic substances play an essential role in soil geochemical processes. Light is known to induce EPFRs formation for dissolved organic matter in aquatic environments; however, the impacts of light irradiation on the variation of EPFRs in soil humic substances remain unclear. In this study, humic acid, fulvic acid, and humin were extracted from peat soil and then in situ irradiated using simulated sunlight. Electron paramagnetic resonance spectroscopy results showed that with the increasing irradiation time, the spin densities and g-factors of humic substances rapidly increased during the initial 20 min and then gradually reached a plateau. After irradiation for 2h, the maximum spin density levels were up to 1.63 × 1017, 2.06 × 1017, and 1.77 × 1017 spins/g for the humic acid, fulvic acid, and humin, respectively. And the superoxide radicals increased to 1.05 × 1014–1.46 × 1014 spins/g while the alkyl radicals increased to 0.47 × 1014–1.76 × 1014 spins/g. The light-induced EPFRs were relatively unstable and readily returned back to their original state under dark and oxic conditions. Significant positive correlations were observed between the concentrations of EPFRs and reactive radical species (R2 = 0.65–0.98, p<0.05), which suggested that the newly produced EPFRs contributed to the formation of reactive radical species. Our findings indicate that under the irradiation humic substances are likely to be more toxic and reactive in soil due to the formation of EPFRs.

关键词: Peat     Humic substances     Environmentally persistent free radicals     Light irradiation     Reactive radical species    

Persistent free radicals in humin under redox conditions and their impact in transforming polycyclic

Hanzhong Jia, Yafang Shi, Xiaofeng Nie, Song Zhao, Tiecheng Wang, Virender K. Sharma

《环境科学与工程前沿(英文)》 2020年 第14卷 第4期 doi: 10.1007/s11783-020-1252-y

摘要: Abstract • Regulation of redox conditions promotes the generation of free radicals on HM. • HM-PFRs can be fractionated into active and inactive types depending on stability. • The newly produced PFRs readily release electrons to oxygen and generate ROS. • PFR-induced ROS mediate the transformation of organic contaminants adsorbed on HM. The role of humic substance-associated persistent free radicals (PFRs) in the fate of organic contaminants under various redox conditions remains unknown. This study examined the characterization of original metal-free peat humin (HM), and HM treated with varying concentrations of H2O2 and L-ascorbic acid (VC) (assigned as H2O2-HM and VC-HM). The concentration of PFRs in HM increased with the addition of VC/H2O2 at concentrations less than 0.08 M. The evolution of PFRs in HM under different environmental conditions (e.g., oxic/anoxic and humidity) was investigated. Two types of PFRs were detected in HM: a relatively stable radical existed in the original sample, and the other type, which was generated by redox treatments, was relatively unstable. The spin densities of VC/H2O2-HM readily returned to the original value under relatively high humidity and oxic conditions. During this process, the HM-associated “unstable” free radicals released an electron to O2, inducing the formation of reactive oxygen species (ROS, i.e., •OH and •O2−). The generated ROS promoted the degradation of polycyclic aromatic hydrocarbons based on the radical quenching measurements. The transformation rates followed the order naphthalene>phenanthrene>anthracene>benzo[a]pyrene. Our results provide valuable insight into the HM-induced transformation of organic contaminants under natural conditions.

关键词: Humic substance     Polycyclic aromatic hydrocarbons (PAHs)     Persistent free radicals (PFRs)     Redox     Reactive oxygen species (ROS)    

NADPH oxidase and reactive oxygen species as signaling molecules in carcinogenesis

Gang WANG

《医学前沿(英文)》 2009年 第3卷 第1期   页码 1-7 doi: 10.1007/s11684-009-0018-5

摘要: Reactive oxygen species (ROS) are small molecule metabolites of oxygen that are prone to participate in redox reactions their high reactivity. Intracellular ROS could be generated in reduced nicotinamide-adenine dinucleotidephosphate (NADPH) oxidase-dependent and/or NADPH oxidase-independent manners. Physiologically, ROS are involved in many signaling cascades that contribute to normal processes. One classical example is that ROS derived from the NADPH oxidase and released in neurotrophils are able to digest invading bacteria. Excessive ROS, however, contribute to pathogenesis of various human diseases including cancer, aging, dimentia and hypertension. As signaling messengers, ROS are able to oxidize many targets such as DNA, proteins and lipids, which may be linked with tumor growth, invasion or metastasis. The present review summarizes recent advances in our comprehensive understanding of ROS-linked signaling pathways in regulation of tumor growth, invasion and metastasis, and focuses on the role of the NADPH oxidase-derived ROS in cancer pathogenesis.

关键词: free radicals     tumor     phox     cell proliferation     cancer therapy    

Plasmonic light trapping for enhanced light absorption in film-coupled ultrathin metamaterial thermophotovoltaic

Qing NI, Hassan ALSHEHRI, Yue YANG, Hong YE, Liping WANG

《能源前沿(英文)》 2018年 第12卷 第1期   页码 185-194 doi: 10.1007/s11708-018-0522-x

摘要: Ultrathin cells have gained increasing attention due to their potential for reduced weight, reduced cost and increased flexibility. However, the light absorption in ultrathin cells is usually very weak compared to the corresponding bulk cells. To achieve enhanced photon absorption in ultrathin thermophotovoltaic (TPV) cells, this work proposed a film-coupled metamaterial structure made of nanometer-thick gallium antimonide (GaSb) layer sandwiched by a top one-dimensional (1D) metallic grating and a bottom metal film. The spectral normal absorptance of the proposed structure was calculated using the rigorous coupled-wave algorithm (RCWA) and the absorption enhancement was elucidated to be attributed to the excitations of magnetic polariton (MP), surface plasmon polariton (SPP), and Fabry-Perot (FP) resonance. The mechanisms of MP, SPP, and FP were further confirmed by an inductor-capacitor circuit model, dispersion relation, and phase shift, respectively. Effects of grating period, width, spacer thickness, as well as incidence angle were discussed. Moreover, short-circuit current density, open-circuit voltage, output electric power, and conversion efficiency were evaluated for the ultrathin GaSb TPV cell with a film-coupled metamaterial structure. This work will facilitate the development of next-generation low-cost ultrathin infrared TPV cells.

关键词: metamaterial     thermophotovoltaic     plasmonics     light trapping     selective absorption    

Kinetics and mechanism of nitrobenzene degradation by hydroxyl radicals-based ozonation process enhanced

Weizhou Jiao, Shengjuan Shao, Peizhen Yang, Kechang Gao, Youzhi Liu

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1197-1205 doi: 10.1007/s11705-020-1998-6

摘要: This study investigated the indirect oxidation of nitrobenzene (NB) by hydroxyl radicals (·OH) in a rotating packed bed (RPB) using competitive kinetics method with -nitrochlorobenzene as a reference compound. The rate constants of NB with ·OH are calculated to be between (1.465±0.113) × 10 L/(mol·s) and (2.497±0.192) × 10 L/(mol·s). The experimental data are fitted by the modified Arrhenius equation, where the activation energy is 4877.74 J/mol, the order of NB concentration, rotation speed, and initial pH is 0.2425, 0.1400 and 0.0167, respectively. The ozonation process of NB could be enhanced by RPB, which is especially effective for highly concentrated NB-containing wastewater under alkaline conditions. The high gravity technology can accelerate ozone mass transfer and self-decomposition of ozone to produce more ·OH, resulting in an increase in the indirect oxidation rate of NB by ·OH and consequently effective degradation of NB in wastewater.

关键词: high gravity technology     hydroxyl radicals     nitrobenzene     reaction kinetics    

Enhanced degradation of trichloroethene by calcium peroxide activated with Fe(III) in the presence of citric acid

Xiang ZHANG,Xiaogang GU,Shuguang LU,Zhouwei MIAO,Minhui XU,Xiaori FU,Muhammad DANISH,Mark L. BRUSSEAU,Zhaofu QIU,Qian SUI

《环境科学与工程前沿(英文)》 2016年 第10卷 第3期   页码 502-512 doi: 10.1007/s11783-016-0838-x

摘要: Trichloroethene (TCE) degradation by Fe(III)-activated calcium peroxide (CP) in the presence of citric acid (CA) in aqueous solution was investigated. The results demonstrated that the presence of CA enhanced TCE degradation significantly by increasing the concentration of soluble Fe(III) and promoting H O generation. The generation of HO? and O ? in both the CP/Fe(III) and CP/Fe(III)/CA systems was confirmed with chemical probes. The results of radical scavenging tests showed that TCE degradation was due predominantly to direct oxidation by HO?, while O ? strengthened the generation of HO? by promoting Fe(III) transformation in the CP/Fe(III)/CA system. Acidic pH conditions were favorable for TCE degradation, and the TCE degradation rate decreased with increasing pH. The presence of Cl , HCO , and humic acid (HA) inhibited TCE degradation to different extents for the CP/Fe(III)/CA system. Analysis of Cl production suggested that TCE degradation in the CP/Fe(III)/CA system occurred through a dechlorination process. In summary, this study provided detailed information for the application of CA-enhanced Fe(III)-activated calcium peroxide for treating TCE contaminated groundwater.

关键词: calcium peroxide     trichloroethene (TCE)     citric acid     ferric ion     free radicals     oxidation    

Regulation of radicals by hydrogen-donor solvent in direct coal liquefaction

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1689-1699 doi: 10.1007/s11705-022-2186-7

摘要: Radicals are important intermediates in direct coal liquefaction. Certain radicals can cause the cleavage of chemical bonds. At high temperatures, radical fragments can be produced by the splitting of large organic molecules, which can break strong chemical bonds through the induction pyrolysis of radicals. The reaction between the formation and annihilation of coal radical fragments and the effect of hydrogen-donor solvents on the radical fragments are discussed in lignite hydrogenolysis. Using the hydroxyl and ether bonds as indicators, the effects of different radicals on the cleavage of chemical bond were investigated employing density functional theory calculations and lignite hydrogenolysis experiments. Results showed that the adjustment of the coal radical fragments could be made by the addition of hydrogen-donor solvents. Results showed that the transition from coal radical fragment to H radical leads to the variation of product distribution. The synergistic mechanism of hydrogen supply and hydrogenolysis of hydrogen-donor solvent was proposed.

关键词: direct coal liquefaction     hydrogen-donor solvent     induced pyrolysis     radical mechanism     density functional theory calculations    

Cell-free systems in the new age of synthetic biology

Fernando Villarreal,Cheemeng Tan

《化学科学与工程前沿(英文)》 2017年 第11卷 第1期   页码 58-65 doi: 10.1007/s11705-017-1610-x

摘要: The advent of synthetic biology has ushered in new applications of cell-free transcription-translation systems. These cell-free systems are reconstituted using cellular proteins, and are amenable to modular control of their composition. Here, we discuss the historical advancement of cell-free systems, as well as their new applications in the rapid design of synthetic genetic circuits and components, directed evolution of biomolecules, diagnosis of infectious diseases, and synthesis of vaccines. Finally, we present our vision on the future direction of cell-free synthetic biology.

关键词: cell-free system     application    

Bacteria inactivation by sulfate radical: progress and non-negligible disinfection by-products

《环境科学与工程前沿(英文)》 2023年 第17卷 第3期 doi: 10.1007/s11783-023-1629-9

摘要:

● Status of inactivation of pathogenic microorganisms by SO4•− is reviewed.

关键词: Sulfate radicals     Disinfection by-products     Inactivation mechanisms     Bacterial inactivation     Water disinfection    

Recent advances in cycloaddition of CO with epoxides: halogen-free catalysis and mechanistic insights

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1879-1894 doi: 10.1007/s11705-023-2354-4

摘要: The atom-economical cycloaddition of CO2 with epoxides to synthesize cyclic carbonates is a promising route for valuable utilization of CO2. Halogenide such as alkali metal halides and quaternary ammonium salt have been developed as the efficient catalysts. However, the spilled halogen causes equipment corrosion and affects the product purity. To address these concerns, the halogen-free cycloaddition of CO2 with epoxides has always been desired. In this review, we systematically discussed the halogen-free catalysis for cycloaddition of CO2 with epoxides from the mechanistic insights, aiming to promote the development of efficient halogen-free catalysts. Two types of catalysts, i.e., alternatives of halogen nucleophiles for epoxide activation, and bifunctional catalysts with Lewis acid-base sites for synergistic activation of CO2 and epoxides are summarized and emphasized. Specially, metal oxides as the potential halogen-free catalysts are highlighted due to their flexible acid-base sites for synergistic activation of CO2 and epoxides, facile preparation, and low cost.

关键词: carbon dioxide     halogen-free catalysis     cyclic carbonate     mechanistic insight    

Hollow carbon spheres and their noble metal-free hybrids in catalysis

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1380-1407 doi: 10.1007/s11705-021-2097-z

摘要: Hollow carbon spheres have garnered great interest owing to their high surface area, large surface-to-volume ratio and reduced transmission lengths. Herein, we overview hollow carbon sphere-based materials and their noble metal-free hybrids in catalysis. Firstly, we summarize the key fabrication techniques for various kinds of hollow carbon spheres, with a particular emphasis on controlling pore structure and surface morphology, and then heterogeneous doping as well as their metal-free/containing hybrids are presented; next, possible applications for non-noble metal/hollow carbon sphere hybrids in the area of energy-related catalysis, including oxygen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, water splitting, rechargeable Zn-air batteries and pollutant degradation are discussed; finally, we introduce the various challenges and opportunities offered by hollow carbon spheres from the perspective of synthesis and catalysis.

关键词: hollow carbon spheres     functionalization     noble metal-free     catalysis    

Thermoresponsive block copolymer supported Pt nanocatalysts for base-free aerobic oxidation of 5-hydroxymethyl

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1514-1523 doi: 10.1007/s11705-021-2092-4

摘要: A base-free catalytic system for the aerobic oxidation of 5-hydroxymethyl-2-furfural was exploited by using Pt nanoparticles immobilized onto a thermoresponsive poly(acrylamide-co-acrylonitrile)-b-poly(N-vinylimidazole) block copolymer, with an upper critical solution temperature of about 45 °C. The Pt nanocatalysts were well-dispersed and highly active for the base-free oxidation of 5-hydroxymethyl-2-furfural by molecular oxygen in water, affording high yields of 2,5-furandicarboxylic acid (up to>99.9%). The imidazole groups in the block copolymer were conducive to the improvement of catalytic performance. Moreover, the catalysts could be easily separated and recovered based on their thermosensitivity by cooling the reaction system below the upper critical solution temperature. Good stability and reusability were observed over these copolymer-immobilized catalysts with no obvious decrease in catalytic activity in the five consecutive cycles.

关键词: aerobic oxidation     base-free     5-hydroxymethyl-2-furfural     Pt nanoparticle     thermoresponsive block copolymer    

Safety issues of methylglyoxal and potential scavengers

Shiming LI, Siyu LIU, Chi-Tang HO

《农业科学与工程前沿(英文)》 2018年 第5卷 第3期   页码 312-320 doi: 10.15302/J-FASE-2017174

摘要:

The health safety of methylglyoxal (MGO) has been recognized as a key issue owing to its ultra-high reactivity toward some key biomolecules such as amino acids, proteins, DNA, sulfhydryl- and basic nitrogen-containing compounds, including amino-bearing neurotransmitters. In this review, we have summarized the endo- and exogenous sources of MGO and its accumulation inside the body due to high intake, abnormal glucose metabolism and or malfunctioning glyoxalases, and review the debate concerning the adverse functionality of MGO ingested from foods. Higher than normal concentrations of MGO in the circulatory system and tissues have been found to be closely associated with the production of advanced glycation end products (AGEs), increased oxidative stress, elevated inflammation and RAGE (AGE receptors) activity, which subsequently progresses to a pathological stage of human health, such as diabetes complications, cancer, cardiovascular and degenerative diseases. Having illustrated the mechanisms of MGO trapping in vivo, we advocate the development of efficient and efficacious MGO scavengers, either assisting or enhancing the activity of endogenous glyoxalases to facilitate MGO removal, or providing phytochemicals and functional foods containing them, or pharmaceuticals to irreversibly bind MGO and thus form MGO-complexes that are cleared from the body.

关键词: reactive carbonyl species     advanced glycation end products     diabetes     brain health     methylglyoxal trapping agents    

标题 作者 时间 类型 操作

One-pot hydrothermal fabrication of BiVO/FeO/rGO composite photocatalyst for the simulated solar light-driven degradation of Rhodamine B

期刊论文

Decontamination of Cr(VI) facilitated formation of persistent free radicals on rice husk derived biochar

Kaikai Zhang, Peng Sun, Yanrong Zhang

期刊论文

Light-induced variation in environmentally persistent free radicals and the generation of reactive radical

Yafang Shi, Yunchao Dai, Ziwen Liu, Xiaofeng Nie, Song Zhao, Chi Zhang, Hanzhong Jia

期刊论文

Persistent free radicals in humin under redox conditions and their impact in transforming polycyclic

Hanzhong Jia, Yafang Shi, Xiaofeng Nie, Song Zhao, Tiecheng Wang, Virender K. Sharma

期刊论文

NADPH oxidase and reactive oxygen species as signaling molecules in carcinogenesis

Gang WANG

期刊论文

Plasmonic light trapping for enhanced light absorption in film-coupled ultrathin metamaterial thermophotovoltaic

Qing NI, Hassan ALSHEHRI, Yue YANG, Hong YE, Liping WANG

期刊论文

Kinetics and mechanism of nitrobenzene degradation by hydroxyl radicals-based ozonation process enhanced

Weizhou Jiao, Shengjuan Shao, Peizhen Yang, Kechang Gao, Youzhi Liu

期刊论文

Enhanced degradation of trichloroethene by calcium peroxide activated with Fe(III) in the presence of citric acid

Xiang ZHANG,Xiaogang GU,Shuguang LU,Zhouwei MIAO,Minhui XU,Xiaori FU,Muhammad DANISH,Mark L. BRUSSEAU,Zhaofu QIU,Qian SUI

期刊论文

Regulation of radicals by hydrogen-donor solvent in direct coal liquefaction

期刊论文

Cell-free systems in the new age of synthetic biology

Fernando Villarreal,Cheemeng Tan

期刊论文

Bacteria inactivation by sulfate radical: progress and non-negligible disinfection by-products

期刊论文

Recent advances in cycloaddition of CO with epoxides: halogen-free catalysis and mechanistic insights

期刊论文

Hollow carbon spheres and their noble metal-free hybrids in catalysis

期刊论文

Thermoresponsive block copolymer supported Pt nanocatalysts for base-free aerobic oxidation of 5-hydroxymethyl

期刊论文

Safety issues of methylglyoxal and potential scavengers

Shiming LI, Siyu LIU, Chi-Tang HO

期刊论文